Health Data & Analytics
Life Sciences
Government & nonprofits

Top 5 Trends in the Healthcare Data Ecosystem

Author
Publish Date
Read Time
January 23, 2023
 min
Table of Contents

By Su Huang and Jia Han

This is a thrilling time to be working in the healthcare industry and with real-world data (RWD) in particular. There is a rapidly growing healthcare data ecosystem, major strides in privacy-preserving methods, growing applications of artificial intelligence (AI) on big healthcare data, and an increasingly open attitude amongst industry stakeholders to use data collaborations to achieve better patient outcomes.

Here are the top 5 trends we observed:

1: More curated and disease-specific clinical data

We’ve seen clinical data providers offer more curated and disease-specific datasets rather than general.

In 2021, with the exception of oncology RWD providers which have long had focused offerings, most of the EHR data partners joining the Datavant ecosystem had general, disease-agnostic datasets. In 2022, we saw a trend towards more disease-specific EHR datasets. This is driven by two factors. First, curating EHR data is expensive. To maximize the value of clinical data, abstraction, review and data cleanup is necessary to ensure EHR fields are entered correctly and consistently, and that physician notes from unstructured text fields are organized into structured data. The time and expense needed for such curation necessitates more focus. Second, life science companies want disease-specific offerings because clinical data is typically licensed by disease state – nearly all the data requests we see from pharma are specific to a therapeutic area.

In addition to disease-focused EHR datasets, we’ve seen growth of patient registries and disease-specific registries working with Datavant. In 2022, we added new registry partners that were interested in supplementing their registry data (typically clinical data and/or patient-reported data) by building longitudinally through linkage to de-identified claims data, or by building more deeply by accessing patient-authorized medical charts through Datavant’s Medical Record Retrieval.

Disease registry data was the number one requested data type by life science companies and their analytics partners, representing one-third of all requests we received in 2022. In particular, oncology, rare disease, women’s health, neurology, and cardiology data were sought-after therapeutic areas.

2: More partners with Social Determinants of Health (SDOH) offerings

In 2021, we cited demographics and SDOH data as the number one data demand trend we observed. This growth has continued into 2022.

We’ve seen life science companies, payers, providers, and the government stay keenly focused on understanding underserved populations and improving healthcare equity. The FDA even published draft guidance recommending that sponsors submit Race and Ethnicity Diversity Plans to the agency early in clinical development. In response to this strong demand from numerous stakeholders, we’ve seen more data providers develop SDOH data offerings.

Some of these data providers are healthcare data partners who have added demographic and social risk factor data fields to their healthcare datasets. Other data providers are consumer data companies that have expertise building datasets that include demographic, lifestyle, and behavior data, traditionally for marketing purposes, and now offer SDOH-specific data packages for healthcare industry customers.

3: More novel real-world data types, especially genomics and imaging data

In 2022, we saw more novel data types especially genomics and imaging data providers join the ecosystem. Many of these partners are building innovative solutions on top of their data intended forLife Sciences, health systems and the research community. These solutions include clinical trial recruitment workflows, finding patients for biomarker-specific treatment, population health for health systems, data insights platforms for clinical discovery, and training algorithms to detect disease earlier. Other genomics partners are leveraging Datavant’s connectivity platform to link in claims data to conduct outcomes analysis that will inform reimbursement strategy with payers. We have also seen genomics labs tokenize tested patients in order to conduct long-term follow-up on disease presentation and outcomes via those patients’ RWD.

Life science companies requested genomics data, imaging data and other unstructured datasets such as physician notes more frequently in 2022 than in prior years. This is likely driven by interest in more oncology-related datasets, to help researchers pinpoint new biomarkers, recruit patients for trials, and diagnose patients earlier.  We believe the interest in large unstructured datasets is also growing due to continued sophistication of AI in healthcare, with many big tech companies seeking to build competencies in healthcare data ranging from HIPAA-compliant warehousing, to data connectivity, to analytics of healthcare data.

4: More real-world data partners pursuing collaborations, enabled by privacy-preserving linkage

It seems like almost every day, we see an announcement of a new data collaboration between healthcare stakeholders. Exciting collaborations are happening across the healthcare landscape, boosting the likelihood of novel insights and breakthrough findings – Mayo Clinic and Helix’s collaboration on a population health genomics study named Tapestry, or CarisLife Sciences and ConcertAI’s recent partnership to align their respective molecular profiling and research-grade clinical data capabilities are just two examples of collaborations that have significant promise. Since healthcare data is so fragmented across thousands of organizations, the full power of healthcare data cannot be unlocked until the industry takes a more collaborative approach.

Data users are also expecting more comprehensive datasets to maximize insights.Life Sciences, payers, providers, government, and other client stakeholders are increasing their expectations given the expansion of data provider options, prompting providers to seek collaboration and offer data connectivity. For instance, in just a few years, we’ve seen the ability to securely link data become an essential capability requested byLife Sciences clients. Large data providers who have historically had standalone data offerings are responding by being increasingly open to partnership. Underpinning this more open attitude is the advancement of privacy-preserving methods to ease collaboration without sacrificing patient privacy, including advancements in the ease and speed of the HIPAA expert determination process and novel approaches to de-identifying healthcare data such as generating synthetic data.

5: More internal, proprietary datasets are being tokenized, linked, and used to deliver insights

Life sciences companies of all sizes, from large pharma and medical device companies to small biotech and emerging diagnostics companies, have valuable proprietary data assets that are siloed across internal teams and are not used for any advanced analytics beyond the immediate purpose for which this proprietary data was initially collected. Instead of leaving these datasets in silos, companies doubled down in 2022 to unlock the value of such proprietary data by inventorying and connecting datasets internally as well as externally to RWD to uncover new insights.

Life science companies gained myriad insights from unlocking proprietary datasets such as clinical trial data, specialty pharmacy data, HUB data, copay card data, device registries, diagnostic testing patients, and more. One customer identified a significant number of new ultra rare disease patients by analyzing claims data and linking it to HUB data. Another customer linked patient support program data with closed claims to study the effectiveness of patient assistance and support programs associated with a cardiovascular drug.

Leveraging internal, proprietary data assets for insights generation is a trend that will continue as connecting data to maximize their value becomes the common standard for analytics.

***

Real-world data swells with promise to make our healthcare system better, including speeding up clinical trials, advancing equity in healthcare, getting specialty drugs to the right patients, and many more use cases. This promise is leading to expansion in the number of RWD providers, new interest from clients in unlocking value from proprietary data assets, and advancement of technology to protect patient privacy while retaining data’s analytical value. We envision a world where every decision in healthcare is informed by data, and there has never been a more exciting time than today!  

If you want to learn more about the Datavant healthcare data ecosystem, submit a request here.

Spotlight on AnalyticsIQ: Privacy Leadership in State De-Identification

AnalyticsIQ, a marketing data and analytics company, recently adopted Datavant’s state de-identification process to enhance the privacy of its SDOH datasets. By undergoing this privacy analysis prior to linking its data with other datasets, AnalyticsIQ has taken an extra step that could contribute to a more efficient Expert Determination (which is required when its data is linked with others in Datavant’s ecosystem).

AnalyticsIQ’s decision to adopt state de-identification standards underscores the importance of privacy in the data ecosystem. By addressing privacy challenges head-on, AnalyticsIQ and similar partners are poised to lead clinical research forward, providing datasets that are not only compliant with privacy requirements, but also ready for seamless integration into larger datasets.

"Stakeholders across the industry are seeking swift, secure access to high-quality, privacy-compliant SDOH data to drive efficiencies and improve patient outcomes,” says Christine Lee, head of health strategy and partnerships at AnalyticsIQ. 

“By collaborating with Datavant to proactively perform state de-identification and Expert Determination on our consumer dataset, we help minimize potentially time-consuming steps upfront and enable partners to leverage actionable insights when they need them most. This approach underscores our commitment to supporting healthcare innovation while upholding the highest standards of privacy and compliance."

Building Trust in Privacy-Preserving Data Ecosystems

As the regulatory landscape continues to evolve, Datavant’s state de-identification product offers an innovative tool for privacy officers and data custodians alike. By addressing both state-specific and HIPAA requirements, companies can stay ahead of regulatory demands and build trust across data partners and end-users. For life sciences organizations, this can lead to faster, more reliable access to the datasets they need to drive research and innovation while supporting high privacy standards.

As life sciences companies increasingly rely on SDOH data to drive insights, the need for privacy-preserving solutions grows. Data ecosystems like Datavant’s, which link real-world datasets while safeguarding privacy, are critical to driving innovation in healthcare. By integrating state de-identified SDOH data, life sciences can gain a more comprehensive view of patient populations, uncover social factors that impact health outcomes, and ultimately guide clinical research that improves health. 

The Power of SDOH Data with Providers and Payers to Close Gaps in Care

Both payers and providers are increasingly utilizing SDOH data to enhance care delivery and improve health equity. By incorporating SDOH data into their strategies, both groups aim to deliver more personalized care, address disparities, and better understand the social factors affecting patient outcomes.

Payers Deploy Targeted Care Using SDOH Data

Payers increasingly leverage SDOH data to meet health equity requirements and enhance care delivery:

  • Tailored Member Programs: Payers develop specialized initiatives like nutrition delivery services and transportation to and from medical appointments.
  • Identifying Care Gaps: SDOH data helps payers identify gaps in care for underserved communities, enabling strategic in-home assessments and interventions.
  • Future Risk Adjustment Models: The Centers for Medicare & Medicaid Services (CMS) plans to incorporate SDOH-related Z codes into risk adjustment models, recognizing the significance of SDOH data in assessing healthcare needs.

Payers’ consideration of SDOH underscores their commitment to improving health equity, delivering targeted care, and addressing disparities for vulnerable populations.

Example: CDPHP supports physical and mental wellbeing with non-medical assistance

Capital District Physicians’ Health Plan (CDPHP) incorporated SDOH, partnering with Papa, to combat loneliness and isolation in older adults, families, and other vulnerable populations. CDPHP aimed to address:

  • Social isolation
  • Loneliness
  • Transportation barriers
  • Gaps in care

By integrating SDOH data, CDPHP enhanced their services to deliver comprehensive care for its Medicare Advantage members.

Providers Optimize Value-Based Care Using SDOH Data

Value-based care organizations face challenges in fully understanding their patient panels. SDOH data significantly assists providers to address these challenges and improve patient care. Here are some examples of how:

  • Onboard Patients Into Care Programs: Providers use SDOH data to identify patients who require additional support and connect them with appropriate resources.
  • Stratify Patients by Risk: SDOH data combined with clinical information identifies high-risk patients, enabling targeted interventions and resource allocation.
  • Manage Transition of Care: SDOH data informs post-discharge plans, considering social factors to support smoother transitions and reduce readmissions.

By leveraging SDOH data, providers gain a more comprehensive understanding of their patient population, leading to more targeted and personalized care interventions.

While accessing SDOH data offers significant advantages, challenges can arise from:

  • Lack of Interoperability and Uniformity: Data exists in fragmented sources like electronic health records (EHRs), public health databases, social service systems, and proprietary databases. Integrating and securing data while ensuring data integrity and confidentiality can be complex, resource-intensive and risky.
  • Lag in Payer Claims Data: Payers can take weeks or months to release claims data. This delays informed decision-making, care improvement, analysis, and performance evaluation.
  • Incomplete Data Sets in Health Information Exchanges (HIEs): Not all healthcare providers or organizations participate in HIEs. This reduces the available data pool. Moreover, varying data sharing policies result in data gaps or inconsistencies.

To overcome these challenges, providers must have robust data integration strategies, standardization efforts, and access to health data ecosystems to ensure comprehensive and timely access to SDOH data.

SDOH data holds immense potential in transforming healthcare and addressing health disparities. 

With Datavant, healthcare organizations are securely accessing SDOH data, and further enhancing the efficiency of their datasets through state de-identification capabilities - empowering stakeholders across the industry to make data-driven decisions that drive care forward.

See all blogs

Achieve your boldest ambitions

Explore how Datavant can be your health data logistics partner.

Contact us